
Performance-Aware Fair Scheduling: Exploiting
Demand Elasticity of Data Analytics Jobs

Chen Chen, Wei Wang, Bo Li
Hong Kong University of Science and Technology

{cchenam, weiwa, bli}@cse.ust.hk

Abstract—Efficient resource management is of paramount
importance in today’s production clusters. In this paper, we
identify the demand elasticity of data-parallel jobs. Demand
elasticity allows jobs to run with a significantly less amount
of resources than they ideally need, at the expense of only a
modest performance penalty. Our EC2 experiment using popular
Spark benchmark suites confirms that running a job using 50%
of demanded slots is sufficient to achieve at least 75% of the
ideal performance. We show that such an elasticity is an intrinsic
property of data-parallel jobs and can be exploited to speed up
average job completion. In this regard, we propose Performance-
Aware Fair (PAF) scheduler to identify the demand elasticity
and use it to improve the average job performance, while still
attaining near-optimal isolation guarantee close to fair sharing.
PAF starts with a fair allocation and iteratively adjusts it by
transferring resources from one job to another, improving the
performance of resource-taker without penalizing resource-giver
by a noticeable amount. We implemented PAF in Spark and
evaluated its effectiveness through both EC2 experiments and
large-scale simulations. Evaluation results show that compared
with fair allocation, PAF improves the average job performance
by 13%, while penalizing resource-givers by no more than 1%.

I. INTRODUCTION

Cluster scheduler continues to be a critical component to
data-parallel clouds, in which diverse coexisting jobs from
many users and applications contend for resources in a shared
environment. As the data volume increases and the demand for
analytics jobs surges, today’s production clusters are frequently
resource-constrained. Therefore, efficient resource management
comes as the top priority for cluster schedulers.

Prevalent cluster schedulers [1]–[7] let jobs estimate the
amount of resources they need. For example, a Spark/Hadoop
job specifies the degree of parallelism, which is the number of
compute slots it needs to run parallel tasks in the ideal case.
Given this ideal demand, the scheduler follows the scheduling
priority and aggressively allocates each job as many slots as
possible, e.g., FIFO and max-min fair allocations.

However, aggressively allocating a job as many resources as
it ideally needs often does not translate into salient performance
benefits. In fact, we show through experimental studies using
recent Spark benchmark workloads (Sec. II) that data analytics
jobs tend to have elastic resource demands. Such an elasticity
allows a job to run with significantly less amount of resources
than it ideally needs, at the expense of only a marginal
performance penalty. For example, in our experiment, we
observed only 5% performance degradation when running a
KMeans job in Spark MLlib [8] using half of the ideal resource

demands. Curious about this result, we performed deep-dive
analyses and confirmed that such an elasticity is by no means
an accident, but a general trend for a wide range of data-parallel
jobs—mainly due to the uneven task runtime [9] and the JVM
warm-up overhead recently uncovered by Lion et al. [10]. Such
a demand elasticity, if well exploited, can dramatically improve
the scheduling performance.

Unfortunately, production cluster schedulers [1]–[4] remain
agnostic to the demand elasticity of data-parallel jobs. These
schedulers settle for isolation guarantee as the primary objec-
tive and seek to maintain fair allocations at all time. However,
blindly enforcing fair allocations is neither necessary nor
efficient. Due to the prevalence of demand elasticity, there are
ample opportunities to serve jobs using much fewer resources
than fair allocations, without noticeable performance penalty.
The saved resources can then be allocated to other resource-
hungry jobs to achieve salient performance improvement.

Motivated by this intuition, in this paper, we propose
Performance-Aware Fair scheduling (PAF) to identify and
exploit the demand elasticity of data-parallel jobs. Our objective
is to opportunistically improve the average job performance
for fast job completion, while still achieving near-optimal
isolation guarantee close to fair sharing. To identify demand
elasticity, PAF builds on the recent advances in performance
prediction frameworks [11]–[14] to profile job performance
models against the number of allocated slots. In particular, for
recurring jobs that run repeatedly over similar datasets, the
performance models can be faithfully learned from historical
traces [11], [12]; for non-recurring jobs, techniques such as
Ernest [13] can efficiently train the performance model with
small samples of input data.

Once the job performance model has been obtained, PAF
computes, for each job, the fair share and uses it as the baseline
allocation to provide isolation guarantee. PAF then seeks to
optimize the average job performance by judiciously adjusting
the baseline allocation without compromising isolation guar-
antee by a small degree pre-specified by the cluster operator.
To do so, PAF identifies two jobs, one indifferent about giving
up some compute slots due to demand elasticity and the other
eager to receive more slots to gain salient performance benefits.
The former then acts as a resource-giver and yields its slots
to the latter, which we call a resource-taker. PAF iteratively
identifies a resource-giver and a resource-taker and transfers
slots from the former to the latter, until an equilibrium has been
achieved. We show that this simple algorithm maximizes the

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

average job performance while providing isolation guarantee
close to fair sharing.

We have prototyped PAF as a pluggable scheduler in Spark,
and evaluated its effectiveness through both testbed experiments
and large scale simulations driven by synthetic workloads.
Our cluster deployment on Amazon EC2 with 64 m4.large
instances shows that, compared with current fair scheduler,
PAF can improve the average job performance by 27% while
ensuring near-optimal isolation guarantee. Our large-scale
simulations further confirm that, by exploiting demand elasticity,
PAF improves the average job performance by up to 13%,
without degrading a single job’s performance over 1% in
comparison with fair sharing.

II. DEMAND ELASTICITY

In this section, we demonstrate the demand elasticity of data-
parallel jobs and motivate the need for performance-aware fair
scheduling. Through EC2 experiments, we reveal the general
performance trend for data-parallel jobs, notably machine
learning and graph analytics algorithms in Spark MLlib [8]:
with more allocations, the performance improvement tends to
become marginal. We performed deep-dive analysis to explain
the reasons behind. We show through a simple experiment that
we can allocate a job much less resources than its fair share
without a noticeable performance penalty. The saved resources
can be used to speed up other jobs.

A. A Measurement Study of Demand Elasticity

We study how the performance of data analytics jobs varies
with different amounts of resources allocated. The resource can
take various forms, e.g., CPU cores, memory, disk or network
I/O bandwidth. In our experiments, we measure the resource
allocation by the number of compute slots, each containing a
fixed amount of CPU cores and memory.

Metric. Given an allocation, our primary metric for job
performance is the progress rate, defined as the shortest
job completion time (JCT) normalized by the JCT with the
allocated number of slots, i.e.,

Progress Rate =
Shortest JCT

JCT with the allocated slots
.

Here, the shortest JCT is achieved when the job is running
alone in the cluster at full degree of parallelism. Progress rate is
a normalized value between 0 and 1. Intuitively, the higher the
value, the faster the job completes with the allocated number
of slots. We adopt progress rate as our primary metric instead
of JCT because the former can better illustrate how sensitive
the performance is when the job is given more (fewer) slots.

Methodology. We ran a number of data analytics applications
provided in SparkBench [15], a recent benchmark suite for
Spark [16]. These applications represent typical machine
learning and graph processing algorithms in Spark MLlib [8],
including KMeans, PageRank, SVDPlusPlus, SVM, Decision-
Tree, and PCA. We configured each application to have a
degree of parallelism of 32, meaning that each analytics job
consists of 32 tasks and can ideally run on 32 slots in parallel.

12 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

KMeans

1 2 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

PageRank

1 2 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

SVDPlusPlus

12 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

SVM

1 2 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

DecisionTree

12 4 8 16 32
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

PCA

Fig. 1: [Cluster] Measured progress rate of data analytics
applications in SparkBench [15] against the number of slots
allocated.

We respectively ran each job in 1, 2, 4, 8, 16 and 32 slots
in an Amazon EC2 [17] cluster, which contains 16 m4.large
instances and is configured to offer totally 32 slots.

Measurement result. We depict the measured progress rate of
each application against the number of allocated slots in Fig. 1,
where each data point has been averaged over 5 runs, and
the error bar captures the measured minimum and maximum
progress. We make the following three observations.

1) Elastic demand with marginal improvement: Fig. 1 illus-
trates a clear trend that across all benchmark applications,
the performance rate is by no means proportional to
the allocation; instead, the performance-allocation curves
show strong concavity. Meaning, having more resource
allocations speeds up job completion, but such an improve-
ment is marginally diminishing. For example, for KMeans
job, compared with the single-thread mode, running it
in two slots gains a dramatic progress improvement by
1.44×; in comparison, when the job is already allocated
8 slots, quadrupling its allocation to the full degree of
parallelism only translates into a slight improvement less
than 10%. In fact, running all workloads using half of the

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

KMeans
PageRank

SVDPlusPlusSVM
0

4

8

12

16

20
Ta

sk
 D

ur
at

io
n

M
ax

/M
in

 R
at

io

7.5
6.1

3.0
4.5

(a) Ratio of the longest task duration
to the shortest one in a stage

KMeans
PageRank

SVDPlusPlusSVM
0

2

4

6

8

10

JV
M

 W
ar

m
-u

p
O

ve
rh

ea
d

3.9

1.6 1.9
2.6

(b) Ratio of average task duration on
cold JVM to that on warm JVM in a
stage.

Fig. 2: [Cluster] Measurements of task duration unevenness
and JVM warm-up overhead in our EC2 cluster. The results
are based on five stages randomly selected from each job.

resources they ideally need is sufficient to achieve at least
75% of the maximum progress—a strong evidence that
the resource demands are highly elastic.

2) Uneven demand elasticity: While the performance-
allocation curves are concave across all applications,
the degree of concavity varies, so does the demand
elasticity. Compared with the other jobs, the performance
of SVDPlusPlus and PageRank scales more linearly
with the number of slots, implying that allocating more
resources to these two jobs likely gains higher benefits
than others.

3) Predictable performance model and demand elasticity:
Throughout our experiments, we observed small variance
of performance across different runs (measured by the
error bar in Fig. 1). This observation is in line with the
previous results [11]–[14] that the performance model of
data analytics jobs can be profiled and predicted accurately.
In fact, we have confirmed that our measurement results in
Fig. 1 can be accurately profiled using the recent prediction
technique Ernest [13] (Sec. IV-A).

Curious about the three findings through our experiments,
we ask: why do analytics jobs exhibit elastic demand with
marginal improvement when allocated more slots? Is it an
edge case limited to a particular workload or a general trend?
We next analyze the root causes of the demand elasticity and
show that it is by no means an accident.

B. Root Cause of Demand Elasticity

Data analytics jobs typically run as DAGs (directed acyclic
graph) of stages each containing as many parallel tasks as
possible [16]. Intuitively, with more slots alloted, the job runs
more tasks in parallel, and hence completes faster. To explain
why such a speedup is marginally decreasing, we analyze the
task execution logs in our EC2 experiments and summarize
our findings as follows.

Task packing. We attribute task packing as the main cause
of running jobs in a relatively small number of slots without
noticeable slowdown. A job’s parallel tasks, even in the same
stage, have significantly uneven execution time. In Fig. 2a, we

Task-1
Task-2

Task-4

Task-3

Slot1:
Slot2:
Slot3: t

Task-5 Task-6

(a) Pack 6 tasks onto 3 slots with already warm JVMs.

Task-1
Task-2

Task-4
Task-3

Slot1:
Slot2:
Slot3:
Slot4:

t
Task-5

Task-6
Slot5:
Slot6:

(b) Running tasks in 6 slots gains marginal speedup.

Fig. 3: An example showing that running a job in 3 slots is
slightly slower than running in 6 slots, as tasks 4, 5, and 6 can
be tightly packed in 3 slots with already warm JVMs.

depict the ratio between the runtime of the slowest and the
fastest tasks in one stage of a job in our EC2 experiments. Each
data point has been averaged over five randomly sampled stages,
and the error bar measures the max and min ratio. We see that
on average, the slowest task runs up to 7.5× longer than the
fastest one in the same stage. Occasionally, the runtime disparity
can even jump to 20×. We attribute the significantly uneven
runtime to data skew, bottlenecked network transportation, and
unstable machine state [18]–[20]. Those factors are generally
stable for jobs repeated running over similar datasets in the
same cluster, so the extent of unevenness of a recurring job’s
task runtime is similar with its past runs.

In the presence of uneven task runtime, there are many
opportunities to “pack” tasks onto a small number of slots
without stretching the JCT by a noticeable amount. Conse-
quently, having more slots only translates into a marginal
benefit. We illustrate this point in Fig. 3, where a job consists
of six tasks and runs in three and six slots, respectively. By
packing all tasks in three slots (cf. Fig. 3a), the JCT is only
slightly increased as compared with running the job at full
degree of parallelism with six slots (cf. Fig. 3b).

Careful readers may have noticed that the three blue tasks
(i.e., tasks 4, 5, and 6) scheduled onto slots 1 and 2 in Fig. 3a
are depicted to run faster than they do in Fig. 3b. We purposely
make this illustration to highlight the impact of JVM warm-up
overhead, which we explain next.

Reusing warm JVM. JVM warm-up overhead plays another
key role in stalling the job that scales out to more slots. Many
popular data analytic frameworks, such as Hadoop [21], Spark
[22], and Tez [23], are built on the Java Virtual Machine (JVM).
For jobs from such frameworks, the JVM warm-up overhead,
i.e., class loading and interpretation of bytecode, is usually
the bottleneck [10]. To quantify how significant the overhead
could be, we measured the runtime of a task when running on
a JVM with cold data normalized by the runtime on an already
warm JVM with compiled code and loaded classes. Fig. 2b
shows the overhead of four jobs, where each data point has
been averaged over five randomly sampled stages, and the error
bar measures the max and min overhead. On average, a task
running on a cold JVM can be slowed down by up to 3.9×.
Besides, as supported in [10], the extent of JVM warm-up

Mufchen
Highlight

Mufchen
Highlight

KMeans PageRank0

8

16

24

32
N

um
be

r o
f A

llo
ca

te
d

Sl
ot

s

16 16

8

24

Fair Alternative

KMeans PageRank Average0.5

0.6

0.7

0.8

0.9

1.0

Pr
og

re
ss

 R
at

e 0.87

0.73

0.80

0.85
0.90 0.88

Fair Alternative

Fig. 4: [Cluster] When KMeans and PageRank are competing in
a cluster with 32 slots, under Spark Fair scheduler the average
progress rate is 0.80. In contrast, an alternative allocation
scheme, by transferring 8 slots from KMeans to PageRank,
can improve the average progress rate to 0.88.

overhead heavily depends on the job’s code characteristic, thus
it is stable for recurring jobs in different runs.

The significant JVM warm-up overhead can largely cancel
out the benefits of job scaling out to more slots. As shown
in Fig. 3b, with three additional slots, the job executes all six
tasks in parallel. However, because tasks 4, 5, and 6 (dark blue)
run in new slots with cold JVMs, they have to load classes
and interpret bytecode from scratch, which results in longer
completion time than reusing warm JVMs as in Fig. 3a.

In summary, aggressively running jobs in as many slots as
possible may not justify the resource allocation. More often
than not, we can expect fast job completion even with a small
number of slots, as tasks can be tightly packed into a pool of
well-warmed JVMs.

Other factors. Other factors can also affect the performance
of jobs when executed with fewer slots than they ideally need,
but their impact is limited. For example, by executing tasks in
multiple batches, the TCP incast problem in the shuffle phase
becomes less severe, allowing tasks to complete faster. Yet,
it is argued in [24] that network is usually not a bottleneck,
which is in line with our observation in the experiment. For the
same reason, data locality is less of a concern, as remote data
fetching does not noticeably stall the performance. In fact, the
locality overhead only matters in the first computation stage
and is amortized in later stages—by reusing the slots allocated
in the first stage, downstream tasks can always have the best
data locality.

C. The Need for Performance-Aware Fair Scheduling

Existing production schedulers [1]–[3], [7] seek to provide
performance isolation by means of fair sharing, while keeping
in the dark about the underlying job performance as well as the
demand elasticity. However, blindly enforcing fair allocation
is neither efficient nor necessary—due to demand elasticity,
there are plenty of chances to run a job with fewer slots than
its fair share, without a noticeable performance compromise.

To illustrate this point, we ran two SparkBench jobs, KMeans
and PageRank, in our EC2 cluster with 16 m4.large instances
(32 slots in total). The two jobs are configured to have the
same weight. With Spark Fair scheduler, the allocation of each
job is in proportion to its weight, and both jobs are evenly

allocated 16 slots. We measured the progress rate of the two
jobs and depict the results in Fig. 4. Now refer back to the
performance-allocation curves of the two jobs in Fig. 1. For
KMeans job, allocating it 16 slots is unnecessary, as it barely
improves the job’s performance over 8 slots; in comparison,
PageRank job will get dramatic speedup if allocated more than
16 slots. This observation prompts us to transfer 8 slots from
KMeans to PageRank. Fig. 4 shows the resultant allocation
(left figure) and the corresponding progress rate measured for
both jobs (right figure). Despite the loss of 8 slots, KMeans
experiences only an slight progress drop by 2% (down from
0.87 to 0.85). In return, PageRank job gains significant benefits,
improving its progress by 23% (up from 0.73 to 0.9).

We learn from the above experiment that, with the profiled
knowledge on demand elasticity, a scheduler can achieve fast
job completion without noticeably compromising performance
isolation. This motivates us to propose performance-aware fair
scheduling, which is the main theme of the next section.

III. PERFORMANCE-AWARE FAIRNESS

In this section, we present Performance-Aware Fair scheduler
(PAF) to take full use of the demand elasticity. Our objective
is two-fold: optimizing the average job performance while
providing near-optimal isolation guarantee. We start with a
high-level overview of the algorithm, followed by a detailed
description. We assume the availability of performance model
and defer the discussion of how this information can be learned
in Sec. IV-A.

Overview. Intuitively, to pursue high performance, jobs that
are indifferent to resource loss shall yield some of the fair share
to others that can benefit more from those resources, as long
as the performance of those altruistic jobs is not compromised
beyond a small extent. To this end, PAF employs a two-phase
procedure to work out the optimal allocation scheme.

The first phase is to impose a fairness constraint. Based
on job performance models, PAF calculates the maximum
resources each job can yield without sacrificing its performance
over a threshold. In the second phase, to achieve the best overall
performance, PAF adopts an heuristic algorithm that iteratively
transfers resources among jobs so as to make the resources
utilized most efficiently.

A. Imposing Fairness Constraint

Although performance improvement is desirable, it shall not
come at the cost of severe fairness compromise. Therefore,
when a job yields resources to others, we shall impose a fairness
constraint to bound the maximal performance degradation that
job would perceive.

Similar to [5], [9], [25], our first attempt is to impose the
fairness constraints directly on allocation without considering
the job performance models. That is, given a fairness knob α
between 0 and 1, it is ensured that each job’s allocation is at
least an α-fraction of the fair share. However, users care more
about the job performance than the actually allocated resources.
In fact, due to demand elasticity, an α-fraction of fair allocation
hardly translates into an α-fraction of the performance (progress

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

0.9Af Af

0.99Pf

Alloc

Progress Rate
(Af ,Pf)

(a) fairness constraint on allocation

0.3Af Af

0.90Pf
Pf

Alloc

Progress Rate
(Af ,Pf)

(b) fairness constraint on performance

Fig. 5: Due to concavity of jobs’ performance-allocation curves,
imposing the fair constraint directly on performance instead of
allocation allows more slots to be yielded. Given the fairness
constraint α=0.9, the former allows the job to yield 0.7-fraction
of its slots to benefit others, yet the latter only allows 0.1.

rate) under the fair allocation. For example, consider the
performance-allocation curve in Fig. 5, where Af is the
fair allocation, and Pf is the corresponding progress rate.
Suppose that 0.9Pf is also acceptable. Proportionally reducing
the allocation to 0.9Af only results in slightly degraded
performance 0.99Pf . In fact, it is sufficient to achieve the
relaxed performance objective using 0.3Af .

Motivated by the example above, we propose to impose the
fairness constraint on performance rather than on allocation.
That is, given the job performance-allocation curves and the
fairness knob α, we implicitly determine each job’s minimum
allocation by ensuring that their progress rate is at least an α-
fraction of that under fair sharing. Thanks to demand elasticity,
this approach allows a job to yield a larger number of slots to
others without violating the fairness constraint.

In practice, to pursue near-optimal fairness, we require α to
be close to 1. Yet, even under such a strict fairness constraint,
we shall show in later sections that PAF can still achieve
significant performance improvement.

B. Optimizing Overall Performance

Given the fairness constraint, the objective of PAF is to
optimize the allocation to achieve the best possible performance.
Formally, given a set of pending jobs J={j1, j2, ..., jn}, let fi
represent the allocation of ji under a fair scheduler, and pi(xi)
the progress rate of ji with allocation xi. We formulate an
optimization problem as follows:

maximize
~x=(x1,x2,...,xn)

∑
i

pi(xi),

subject to pi(xi) ≥ αpi(fi), i = 1, . . . , n.

(1)

By solving problem (1), PAF can find the optimal allocation
scheme (x∗1, x

∗
2, ..., x

∗
n) that achieves the highest average

progress rate. Here, we refer to x∗i as the PAF-allocation of
job ji. While problem (1) can be directly solved using existing
convex optimization toolboxes, doing so is too heavy-lifting.
We instead resort to a simple, yet effective heuristic algorithm.

Following the basic intuition of PAF, the algorithm iteratively
transfers resources from one job to another that can benefit
more significantly by obtaining those resources. It starts by
initializing the PAF-allocation of each job to its fair share, and

Initial PAF-allocation

job-1’s final
PAF-allocation

job-2’s final
PAF-allocation

Fig. 6: PAF’s working process to get the optimal allocation (i.e.,
PAF-allocation) of two jobs with the same weight. Initially
each job’s PAF-allocation is set to the fair allocation 6. Since
job-1’s sacrificeRate (i.e., the lSlope of the point with the PAF-
allocation) is less than job-2’s benefitRate (i.e., the rSlope of
the point with the PAF-allocation), PAF iteratively transfers
one slot from job-1’s PAF-allocation to that of job-2. After two
iterations the process terminates, and the final PAF-allocations
of job-1 and job-2 are 4 and 8, respectively.

then works by judiciously adjusting the PAF-allocation based
on the job’s performance-allocation curves. We shall show later
that this algorithm converges to the optimal solution.

To illustrate how PAF works, we start with a simple case of
two jobs, and then generalize the discussion to multiple jobs.

A simple case of two jobs. Given that job progress can only
be measured with an integral number of slots, the profiled
performance-allocation curve is piecewise linear. As shown in
Fig. 6, we first define, for each measured point in that curve,
the lSlope (slope of the adjacent piece to the left) and rSlope
(slope of the adjacent piece to the right). In particular, we
use sacrificeRate to measure lSlope of the point with PAF-
allocation, as it quantifies the loss of progress rate if the job’s
PAF-allocation is reduced by one slot. Similarly, we measure
rSlope by the benefitRate, which quantifies the progress gain
if the job is allocated one more slot.

When there are only two jobs, as long as one job’s
sacrificeRate is less than the other’s benefitRate, PAF iteratively
transfers one slot from the former’s PAF-allocation to the
latter’s. For the two jobs in Fig. 6, their initial PAF-allocations
are both 6 slots. Noticing that job-1’s sacrificeRate is less
than job-2’s benefitRate, PAF transfers one slot from job-1
to job-2. This process repeats in two iterations, until job-1’s
sacrificeRate exceeds job-2’s benefitRate. We can easily verify
that the resultant PAF-allocations of the two jobs, 4 and 8
slots, are optimal with the maximum average job performance.

Note that, the fairness constraint can be naturally integrated
into the above process. Once a job’s PAF-allocation has
decreased to the lower bound required to satisfy the fairness
constraint, the job would stop yielding more resources, and
the slot transferring process terminates immediately.

PAF in general cases. For general cases with multiple jobs,
PAF aims to converge to an equilibrium defined as follows.

Definition 1 (Global Equilibrium): Given a set of jobs J ,
let Y ⊆ J be the set of jobs that can yield more slots without
violating the fairness constraint. The global equilibrium is

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Algorithm 1 Performance-Aware Fair Allocation
Input: Σ . the set of pending jobs
Require: {pj(x) | j ∈ Σ} . performance(p)-allocation(x) curves
Output: {j.pafAlloc | j ∈ Σ} . PAF-allocations of all jobs

1: for j in Σ do
2: j.fairAlloc ← the fair share of j
3: j.pafAlloc ← j.fairAlloc
4: j.minAlloc ← minx{x | pj(x) ≥ αpj(j.fairAlloc)}

. the minimum allocation to satisfy fairness constraint α
5: while True do
6: resource-giver ← argminj{j.sacrificeRate | j ∈ Σ}
7: resource-taker ← argmaxj{j.benefitRate | j ∈ Σ}
8: if resource-giver.sacrificeRate ≥ resource-taker.benefitRate
9: return

10: else if resource-giver.pafAlloc = resource-giver.minAlloc
11: Σ ← Σ \ {resource-giver}
12: else
13: resource-giver.pafAlloc ← resource-giver.pafAlloc−1
14: resource-taker.pafAlloc ← resource-taker.pafAlloc+1

achieved when

min
j∈Y

j.sacrificeRate ≥ max
j∈J

j.benefitRate.

Once the global equilibrium is achieved, the overall progress
rate cannot be further improved without violating the fairness
constraint. Therefore, the allocation scheme under the global
equilibrium is the optimal solution.

We propose Algorithm 1 to find the global equilib-
rium. The basic idea is to iteratively reduce the gap be-
tween minj∈Y {j.sacrificeRate} and maxj∈J {j.benefitRate}.
In each iteration, PAF first identifies two jobs, one with
the minimum sacrificeRate (referred to as the resource-
giver) and the other with the maximum benefitRate (referred
to as the resource-taker). It then transfers one slot from
the resource-giver’s PAF-allocation to that of the resource-
taker. The iteration continues until there is no qualified
resource givers (i.e., set Y becomes ∅) or the slot transferring
does more harm than good to the overall performance (i.e.,
minj∈Y {j.sacrificeRate} ≥ maxj∈J {j.benefitRate}).

Algorithm 1 is more than a simple heuristic. We show that,
given the fairness constraint, the algorithm can always converge
to the global equilibrium with the optimal allocation.

Theorem 1 (Convergence): Algorithm 1 converges to the
global equilibrium after a finite number of iterations.

Proof: We only need to prove that the algorithm always
converges, because if the algorithm converges, it can only
converge to the global equilibrium: otherwise, one slot can still
be transferred from the resource-giver to the resource-taker.

We notice that the total slots that could be transferred among
jobs is a finite number determined by the fairness constraint.
Thus, to verify that the algorithm converges after a finite
number of iterations, we only need to show that the transfer
is unidirectional, i.e., each job monotonously yields or gains
slots. Next, we will show by contradiction that a job who has
yielded a slot is impossible to gain any slot later, and the other
side could be proved symmetrically.

Suppose that a job j1 yields a slot to others in itera-
tion p, and gains a slot later from j2 in iteration q(p <
q). Let jpi .sacrificeRate(benefitRate) represent the sacrificeR-
ate(benefitRate) of ji in iteration p. Then, because j1 instead
of j2 is chosen to yield slot in iteration p, we have:

jp1 .sacrificeRate ≤ jp2 .sacrificeRate. (2)

In iteration q, since j2 yields one slot to j1, we have:

jq1 .benefitRate > jq2 .sacrificeRate. (3)

Note that jq1 .benefitRate is identical with jp1 .sacrificeRate, we
combine (2) with (3), and get:

jq2 .sacrificeRate < jp2 .sacrificeRate. (4)

Due to the curve concavity of j2, (4) implies that j2 must have
gain slots between iteration p and q. Suppose j2 gains the last
slot in iteration s(p < s < q), then,

js2 .benefitRate=jq2 .sacrificeRate <jq1 .benefitRate=js1 .benefitRate.

This implies, it’s j1 instead of j2 that shall gain the slot in
iteration s. Hence there is a contradiction.

We next analyze the time complexity of Algorithm 1. Assume
that there are N pending jobs in total. The for loop (line 1 to
line 4 in Algorithm 1) takes O(N) time to complete. Let M be
the total number of slots in the cluster. The number of iterations
in the while loop (line 5 to line 14 in Algorithm 1) must be
smaller than M , because the slot transferring is unidirectional
(shown in Theorem 1). Furthermore, each iteration in that
while loop takes O(logN) time, due to the operations to
search for jobs with the minimum sacrificeRate and then the
maximum benefitRate. Putting all those altogether, the total
time complexity of Algorithm 1 is O(M logN +N).

IV. PROTOTYPE IMPLEMENTATION

A. Curve Preparation

So far, our solutions are built upon an assumption that we can
obtain the perfect job performance models. That is, given each
possible number of allocated slots, we know the corresponding
job progress rate accurately. However, this is usually not the
case in practice. Even for recurring jobs whose performance
models can be profiled from past runs, it would be too expensive
for the profiling work to cover the entire allocation space.
Besides, the profiling errors are usually unavoidable, due to
factors like random variations.

Therefore, to make PAF practical, we need to address the
challenge of incomplete or inaccurate performance profiling.
This can be solved by the recent system called Ernest
[13] which proposes a general mathematical form of job
performance models for a wide range of data-analytics jobs.
In particular, Ernest characterizes the relationship between
progress rate p and the number of allocated slots x through
the following equation:

p(x) = 1/(a0 + a1 ∗ x+ a2/x+ a3 ∗ logx).

Here, coefficients a0, a1, a2 and a3 are decided by parametric
regression. Based on this form, we can obtain the desired

2 8 16 32 64 128
Number of Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e

KMeans
PageRank
SVDPlusPlus

Fig. 7: [Cluster] Measured progress rate of KMeans, PageRank
and SVDPlusPlus in SparkBench [15] against the number of
slots allocated. The curves are fitted with Ernest model.

performance-allocation curves by parameter fitting with the
available profiling data. As we shall show later in Sec. V, with
only a few measured data points, the curves can be completely
and accurately fit.

Our solution can also be easily made compatible with the
jobs whose performance-allocation curves are not available: for
those jobs, we simply allocate them the fair share and exclude
them from the slot transferring process.

B. Spark Implementation

We have implemented PAF as a pluggable scheduler in
Spark 2.1.0. Our implementation associates each job with its
performance-allocation curve (i.e., the coefficients a0, a1, a2
and a3) as a job property, which is passed to the scheduler upon
the arrival of the job. We implemented our PAF scheduler in the
scheduling module of Spark called TaskSchedulerImpl. Once
a new scheduling request is received, the scheduler computes
the PAF-allocation of each pending job. It then enforces PAF-
allocation by preferentially offering available slots to the jobs
whose current allocation is the furthest from the target PAF-
allocation.

V. EVALUATION

In this section, we evaluate the effectiveness of PAF in
terms of both average job performance and isolation guarantee.
Through the EC2 experiments, we illustrate in a fine-grained
manner how PAF behaves with different levels of fairness
guarantees. Furthermore, for performance evaluation at a larger
scale, we resort to simulations based on synthesized workloads.

A. Testbed Experiment

Setup. We deployed our Spark prototype in a 64-node Amazon
EC2 cluster with m4.large instances (each with 2 cores and
8GB RAM). In total the cluster is configured to have 128
slots. As for the workloads, we chose three jobs from the
SparkBench workload suite [15]: KMeans, PageRank and
SVDPlusPlus. The degree of parallelism is set to 128 for
each job. The performance-allocation curves of the three
jobs (depicted in Fig. 7) are smoothed with the curve-fitting
technique elaborated in Sec. IV. In particular, the three jobs
are assigned different weights: 12 for KMeans, 3 for PageRank,
and 1 for SVDPlusPlus. The amount of fair allocation a job
receives is proportionally determined by its weight.

KMeans PageRank SVDPlusPlus
0

32

64

96

128

A
llo

ca
te

d
Sl

ot
s 96

24

8

75

28 24

49
43

3635

52
41

FAIR
PAF(α=0.99)
PAF(α=0.95)
PAF(α=0.90)

Fig. 8: [Cluster] Slot allocation results under different schedul-
ing schemes.

KMeans PageRank SVDPlusPlus Average
0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

 R
at

e 0.99

0.48

0.29

0.59

0.99

0.53 0.54

0.68

0.96

0.64 0.63
0.73

0.91

0.69 0.67
0.75

FAIR PAF(α=0.99) PAF(α=0.95) PAF(α=0.90)

Fig. 9: [Cluster] Progress rates under different scheduling
schemes. PAF can increase the average progress rate by around
27% (from 0.59 to 0.75).

We use Spark Fair Scheduler as the baseline. As illustrated
in Fig. 8, the three jobs are respectively allocated 96, 24,
and 8 slots under the baseline. In pursuit of better job
performance, given the demand elasticity exposed in Fig. 7,
it deserves to transfer some slots from KMeans to PageRank
and SVDPlusPlus—doing so impairs KMeans only marginally,
but it can largely benefit the other two jobs. However, Fair
Scheduler is agnostic to this demand elasticity, and it simply
settles on fair allocations that are proportional to the jobs’
weights, which opportunistically hurts the overall performance.

In contrast, by being aware of the job performance, PAF is
capable of achieving the optimal overall performance under
any given fairness constraint. When that constraint α is set
to 0.90 (a guarantee that any job’s performance cannot be
compromised by more than 10% compared with that under fair
allocation), PAF transfers 61 slots from KMeans to improve
PageRank and SVDPlusPlus. Consequently, as shown in Fig. 9,
the average progress rate increases to 0.75—an improvement
of 27% over that of fair allocation.

In general, with larger α (i.e., more restrictive fairness
constraints), fewer slots are yielded by resource-givers, and the
potential room for performance improvement becomes smaller.
Nevertheless, even when α is set to 0.99, PAF can still improve
the average progress rate by 15% (from 0.59 to 0.68). In other
words, slightly relaxing the fairness requirement can result in
a dramatic performance improvement.

Note that the performance improvement brought by PAF
depends on the workloads. A natural question is: how would
PAF behave for production applications? We next answer this
question through large-scale simulations based on synthesized
workloads.

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

8000-slots 2000-slots 800-slots
0.0

0.2

0.4

0.6

0.8

1.0
A

vg
. P

ro
gr

es
s R

at
e

0.78

0.44

0.26

0.88

0.49

0.29

0.89

0.51

0.31

0.90

0.52

0.32

FAIR
PAF (α=0.99)
PAF (α=0.95)
PAF (α=0.90)

Fig. 10: [Simulation] PAF performance in different clusters.

B. Large-Scale Simulation

Setup. We have simulated three clusters of different sizes,
consisting of 8000, 2000 and 800 slots, respectively. To emulate
the real-world environment, our simulator has incorporated the
impact of JVM warm-up on task performance: if a task reuses
a slot that has just been released by others from the same job,
that task’s execution would be sped up by a JVM warm-up
benefit factor δ, which is specified in each job as an internal
attribute.

Workloads. We synthesize a workload suite based on the
Google traces [26]. The workload suite contains over 200
jobs, and to evaluate PAF’s performance in general case, the
attributes of those jobs are chosen randomly from parameter
pools. For each job, its degree of parallelism, weight, and
JVM warm-up benefit factor δ, are randomly chosen from the
range of 1-200, 1-20 and 1-8, respectively. Here, the range of
δ is configured based on our observation in Fig. 2b. Besides,
following prior works like [9], we assume that the task duration
of a job follows a long-tail Pareto distribution, where the shape
parameter β is randomly chosen from the reported typical
range of 1.6-16. Shape parameter β measures the degree of
unevenness of the distribution of a job’s task duration. The
smaller the shape parameter β, the more unevenly distributed
the task durations of a job, and meanwhile the more concave
the job performance-allocation curve. Finally, the average task
duration and job submission intervals are determined based on
the Google traces [26].

Fig. 10 depicts the performance of PAF in our simulation.
In the large cluster with 8000 slots, a fairness constraint of
α = 0.90 allows PAF to improve the average progress rate by
15% (from 0.78 to 0.90). Even with a more restrictive fairness
constraint of α = 0.99, we can still gain an improvement of
13%. Meanwhile, we observe less improvement in clusters with
fewer slots. This is because small clusters are more likely to
get overloaded, and thus fewer jobs can yield slots to benefit
others without violating the fairness constraints.

What workloads can benefit more from PAF? Apart from
the overall improvement, we are also curious about how
different workloads are affected under PAF. To figure out the
answer, we performed the following deep-dive analysis based
on the simulation results in the large cluster with 8000 slots.

1) Curve concavity: By randomly choosing the shape param-
eter β and JVM warm-up benefit factor δ, we have generated
workloads with various performance-allocation curves. As

β<3 3 β<12 β≥12
0

20

40

60

80

100

A
vg

. I
m

pr
ov

em
en

t o
f

 P
ro

gr
es

s R
at

e
(%

) PAF (α=0.9)

PAF (α=0.99)

(a) Shape parameter β in Pareto dis-
tribution of task runtime. Smaller
β implies stronger concavity of job
performance curve.

δ≥5 2 δ<5 δ<2
0

20

40

60

80

100

A
vg

. I
m

pr
ov

em
en

t o
f

 P
ro

gr
es

s R
at

e
(%

) PAF (α=0.9)

PAF (α=0.99)

(b) Task acceleration factor δ due
to JVM warm-up benefit. Larger δ
implies stronger concavity of job
performance-allocation curve.

Fig. 11: [Simulation] Average performance improvement of
jobs under PAF (compared with fair scheduler), binned by
factors affecting concavity of performance-allocation curves.
In general, jobs whose curve exhibit stronger concavity are
less benefited from PAF.

 <10 10-20 20-30 30-40 40-50 >50
Parallelism/Weight

-20

0

20

40

60

80

100

A
vg

. I
m

pr
ov

em
en

t o
f

 P
ro

gr
es

s R
at

e
(%

) α :0.9

α :0.99

Fig. 12: [Simulation] Average performance improvement of
jobs under PAF (compared with fair scheduler), binned by their
values of parallelism-weight ratio. In general, jobs with larger
parallelism yet smaller weight can benefit more from PAF.

described in Sec. II, a smaller β (i.e., stronger heterogeneity
in task duration) and a larger δ both attribute to stronger curve
concavity. To see how the degree of concavity affects the job
performance under PAF, we classify all jobs into three groups
based on their values of β and δ. We then measure how much
the average progress rate of jobs in each group is improved
under PAF compared with that under fair scheduler. Fig. 11
shows the results, from which we see that jobs whose curves
exhibit stronger concavity are less benefited. This is because
those jobs have more salient demand elasticity and usually
serve as resource-givers.

2) Parallelism-weight ratio: In addition to the curve con-
cavity, a job’s parallelism-weight ratio may also affect its
performance improvement under PAF. As shown in Fig. 12,
the general trend is that jobs with larger parallelism-weight
ratios usually gain more improvements. In fact, because the
fair allocation of a job is proportional to its weight, jobs with
a larger degree of parallelism (i.e., slot demand) but smaller
weights would be starved more severely. For such slot-hungry
jobs, their performance can be efficiently improved by just a
few more slots. In contrast, jobs with smaller parallelism-weight
ratio are more indifferent to the loss of slots. They usually act
as resource-givers and are less likely to be benefited.

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight

Mufchen
Highlight
conclusion in abstract

Mufchen
Highlight

VI. RELATED WORK

Cluster scheduling. Most cluster schedulers [1]–[4] set fair-
ness as the primary scheduling objective, where the fair
allocation of each job is computed based on max-min fairness
[27] or its variants, such as DRF [7] for multi-resources and
Choosy [28] for cases with placement constraints. Yet, fair
schedulers often cause long job response time [5], [29].

To achieve fast job response, several performance-centric
schedulers [30], [31] resort to Shortest Remaining Processing
Time First (SRPT)—the optimal strategy in theory [32] for
minimizing the average job response time. Yet, SRPT is prone
to starvation, meaning that large jobs are always assigned
lower priority and may never get executed.

To address the deficiencies of both fairness-centric and
performance-centric schedulers, there are some attempts to
strike a balance between fairness and performance. For example,
Grandl et al. [5] incorporates fairness into SRPT through a
flexible fairness knob. Later, in light of the limitations of
instantaneous fairness, CARBYNE [6] and CFQ [33] propose
to selectively prioritize small jobs, as long as doing so does
not delay the completion of other jobs, thus they achieve better
efficiency without compromising performance isolation. Yet,
none of the above works have noticed the job demand elasticity.

Performance modeling and prediction. Knowing in advance
how job performance varies with the allocated resources
can help decide the best resource configuration in terms of
performance and cost. A series of performance prediction
techniques have been developed recently.

An early work ARIA [12] aims to predict the completion
time of recurring MapReduce jobs based on fine-grained
performance information profiled in the previous runs, such as
task durations. Recently, Ernest [13] proposes a general model
form that captures the typical computation and communication
patterns to predict the job execution time under various resource
configurations. The model is trained with job behaviors on
small samples of input data. More recently, to search of light-
weight predictions, CherryPick [14] uses Bayesian Optimization
to determine the most appropriate model with a confidence
interval, which requires much fewer sample runs.

VII. CONCLUSION

In this paper, we have identified, demonstrated and exploited
the demand elasticity of data-analytics jobs. With demand
elasticity, jobs can run with significantly less amount of
resources than they ideally need, with only a moderate
performance penalty. We have verified its prevalence and
predictable nature through EC2 measurements, and have shown
that demand elasticity can be used to help speed up average job
completion. To this end, we have proposed Performance-Aware
Fair (PAF) scheduler to automatically exploit demand elasticity
for optimal overall performance, while retaining near-optimal
isolation guarantee. PAF starts with the fair allocation and
then judiciously adjusts it by iteratively transferring resources
from one job to another, so as to improve that resource-
taker’s performance while ensuring negligible penalty on

the resource-giver. We have implemented PAF in Spark and
confirmed its effectiveness using EC2 experiments and large-
scale simulations.

ACKNOWLEDGEMENT

The research was supported in part by RGC GRF grants
under the contracts 16211715 and 16206417, as well as an
RGC CRF grant under the contract C7036-15G.

REFERENCES

[1] V. K. Vavilapalli et al. Apache hadoop yarn: Yet another resource
negotiator. In ACM SoCC. 2013.

[2] Hadoop Fair Scheduler. https://hadoop.apache.org/docs/r2.7.3/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[3] Hadoop capacity Scheduler. https://hadoop.apache.org/docs/r2.7.3/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[4] B. Hindman et al. Mesos: A platform for fine-grained resource sharing
in the data center. In USENIX NSDI. 2011.

[5] R. Grandl et al. Multi-resource packing for cluster schedulers. In ACM
SIGCOMM. 2014.

[6] R. Grandl et al. Altruistic scheduling in multi-resource clusters. In
USENIX OSDI. 2016.

[7] A. Ghodsi et al. Dominant resource fairness: Fair allocation of multiple
resource types. In USENIX NSDI. 2011.

[8] Apache Spark MLlib. https://spark.apache.org/mllib/.
[9] X. Ren et al. Hopper: Decentralized speculation-aware cluster scheduling

at scale. ACM SIGCOMM CCR, 2015.
[10] D. Lion et al. Don’t get caught in the cold, warm-up your jvm: Understand

and eliminate jvm warm-up overhead in data-parallel systems. In USENIX
OSDI. 2016.

[11] A. D. Ferguson et al. Jockey: guaranteed job latency in data parallel
clusters. In ACM Eurosys. 2012.

[12] A. Verma et al. ARIA: automatic resource inference and allocation for
mapreduce environments. In ACM ICAC. 2011.

[13] S. Venkataraman et al. Ernest: Efficient performance prediction for
large-scale advanced analytics. In USENIX NSDI. 2016.

[14] O. Alipourfard et al. Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics. In USENIX NSDI. 2017.

[15] M. Li et al. Sparkbench: a comprehensive benchmarking suite for in
memory data analytic platform spark. In ACM CF. 2015.

[16] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In USENIX NSDI. 2012.

[17] Amazon EC2. https://aws.amazon.com/ec2/.
[18] J. Dean et al. The tail at scale. Communications of the ACM, 2013.
[19] G. Ananthanarayanan et al. Reining in the outliers in map-reduce clusters

using mantri. In USENIX OSDI. 2010.
[20] Y. Kwon et al. Skewtune: mitigating skew in mapreduce applications.

In ACM SIGMOD. 2012.
[21] Hadoop. https://hadoop.apache.org.
[22] Spark. https://spark.apache.org.
[23] Tez. https://tez.apache.org.
[24] K. Ousterhout et al. Making sense of performance in data analytics

frameworks. In USENIX NSDI. 2015.
[25] W. Wang et al. Coflex: Navigating the fairness-efficiency tradeoff for

coflow scheduling. In IEEE INFOCOM. 2017.
[26] C. Reiss et al. Heterogeneity and dynamicity of clouds at scale: Google

trace analysis. In ACM SoCC. 2012.
[27] D. Nace et al. A tutorial on max-min fairness and its applications to

routing, load-balancing and network design. In IEEE RIVF. 2006.
[28] A. Ghodsi et al. Choosy: Max-min fair sharing for datacenter jobs with

constraints. In ACM Eurosys. 2013.
[29] M. Zaharia et al. Delay scheduling: a simple technique for achieving

locality and fairness in cluster scheduling. In ACM EuroSys. 2010.
[30] Y. Wang et al. Preemptive reducetask scheduling for fair and fast job

completion. In USENIX ICAC. 2013.
[31] B. Moseley et al. On scheduling in map-reduce and flow-shops. In ACM

SPAA. 2011.
[32] L. Schrage. A proof of the optimality of the shortest remaining processing

time discipline. Oper. Res., 16(3):687–690, 1968.
[33] C. Chen et al. Cluster fair queueing: Speeding up data-parallel jobs with

delay guarantees. In IEEE INFOCOM. 2017.

Mufchen
Highlight

	II. DEMAND ELASTICITY
	III. PERFORMANCE-AWARE FAIRNESS
	IV. PROTOTYPE IMPLEMENTATION
	V. EVALUATION
	VI. RELATED WORK

