






Figure 2: The overhead of kill-based task preemption in
different types of workloads.

2.2 Overhead of Kill-based Preemption
Task killing is a simple means to realize preemption.
However, killed tasks cannot be resumed and have to be
relaunched. Most cluster schedulers use this approach
due to its simplicity.

Figure 2 shows the overhead of kill-based preemption
for different types of MapReduce and Spark jobs. We
configured long jobs to fully utilize a 26-node YARN
cluster. Detailed configuration of the cluster can be
found in §5.1. During the execution of each long job,
we injected a 6-minute burst of short Spark-SQL queries.
The YARN default capacity scheduler was set to assign a
share of 95% cluster resources to Spark-SQL queries, en-
forcing a strictly higher priority for the short jobs. Upon
the arrival of short jobs, YARN kills tasks selected ran-
domly from the long job to free resources needed by
short jobs. Killed tasks are immediately resubmitted to
YARN for rescheduling.

As shown in Figure 2, MapReduce jobs suffer less
performance penalty from task killing than Spark jobs
do. Task killing degraded the overall performance of
MapReduce jobs by 8% - 64% while incurring as much
as 92% overhead to Spark jobs. Among MapReduce
jobs, those are dominated by the map phase, e.g., word-
count, suffered marginal degradation compared to the
noticeable slowdown experienced by reduce-heavy jobs,
e.g., terasort. Because mappers are usually small and in-
dependent from each other, the termination of a few map-
pers does not lead to much computation loss nor signifi-
cantly delay job completion. In contrast, reducers require
all-to-all communications with mappers. This data shuf-
fling phase runs much longer than mappers. Therefore,
the killing of one reducer requires the lengthy and re-
source intensive shuffling process to be restarted, which
substantially delays job completion.

Spark jobs are more susceptible to delays due to task
killings for the following reasons. First, Spark jobs, es-
pecially machine learning algorithms that iterate over
a data set, require frequent synchronizations between
tasks. If one task is killed, other dependent tasks are un-
able to make any progress. Second, Spark in-memory
processing does not persist intermediate results to stor-
age. For jobs with multiple stages, the killing of one task

could lead to the re-computation of dependent stages.
This recovery process is usually quite expensive. Fig-
ure 2 shows that Spark jobs suffered on average 70%
slowdown when interrupted by the burst of short jobs.

3 Container-based Task Preemption
In this section, we present two simple container-based
approaches for task preemption and in the next section
we integrate them into cluster scheduling.

3.1 Container-based Virtualization
Container-based virtualization, such as Docker, has
gained popularity due to its almost negligible overhead
compared to hypervisor-based virtualization. A con-
tainer provides isolated namespaces for applications run-
ning inside the container and forms a resource account-
ing and allocation unit. Linux uses control groups
(cgroups) to precisely control the resource allocation
to a container. Not only priorities can be set to reflect
the relative importance of containers, hard resource lim-
its guarantee that containers consume resources no more
than a predefined upper bound even there are available
resources in the system.

3.2 Immediate Task Preemption
We leverage the flexible resource allocation enabled by
containers to temporarily suspend a task in Big Data an-
alytics and reclaim its resources without losing the exe-
cution progress. We assume that each task is encapsu-
lated into a container 2. Each container forms a cgroup

and is configured with two types of resources: CPU and
memory. Parameter cpuset.cpus controls the number
of CPU cores that a container can use and parameter
memory.limit in bytes limits the maximum memory
usage. cpu.cfs quota us and cpu.cfs period us

together determine the maximum CPU allocation to a
container. This enables fine-grained control of CPU cy-
cles beyond allocating CPU cores.
Task suspension involves two steps: stop task execu-
tion and save task context. To stop a task, the host con-
tainer is deprived of CPU to stop task execution. To save
the task’s context for later resumption, its dirty data in
memory needs to be written back to disk. Fortunately,
no additional effort is needed to support context saving.
When reclaiming a container’s memory, the virtual mem-
ory management in the host operating system (OS) writes
back dirty data. For fault tolerance, cluster schedulers
monitor the progress of individual tasks and launch spec-
ulative tasks if stragglers are detected.

The suspension of containers will falsely trigger the
failover. To avoid extensive changes to cluster sched-
ulers to support task preemption, we suspend a task but

2Spark runs multi-threaded task in an executor. Therefore, a con-
tainer corresponds to an executor in Spark and contains multiple tasks.

USENIX Association 2017 USENIX Annual Technical Conference    253



Figure 3: Immediate preemption incurs high overhead
due to memory reclaiming and restoring.

maintain a minimal footprint for the task to keep it alive
to the cluster scheduler. We empirically set the minimal
container footprint to 1% CPU and 64 MB memory, with
which the thread responsible for sending the heartbeat in
the container still appears to be alive to the scheduler. We
also disable speculative execution for suspended tasks.
Task resumption is simply re-activating the container
by restoring its deprived resources. The resumption also
follows two steps. The memory size of the container is
restored from the minimal footprint back to its original
size and the CPU limit is lifted. We call this type of
preemption, which reclaims and restores all resources of
a preempted task in one pass, immediate preemption (IP).
Overhead of immediate preemption Despite that kill-
based preemption is crude, it guarantees timely schedul-
ing of short jobs. The container-based immediate pre-
emption, however, can possibly delay short job schedul-
ing and inflict performance degradation to long jobs.
First, it may take non-negligible time to reclaim the
memory of preempted tasks before short tasks can be
scheduled, depending on the working set size of pre-
empted tasks. Second, task resumption requires loading
saved context into memory. For certain jobs, this process
is particularly long.

Figure 3 shows the memory swapping activities when
a 1 GB container was suspended to the minimal footprint
and later resumed. The container ran a multi-threaded
synthetic Java benchmark that repeatedly and randomly
touched a 1 GB array. Figure 3(a) shows that it took 3
seconds (between the 40th and 45th seconds) to reclaim
nearly 1 GB memory. Note that the swapping activities
lasted much longer until the container was deprived of
CPU at the 130th second. It took even longer to load
saved context into memory after the container was re-
sumed at the 230th second. The reason is that the multi-
ple threads in the container simultaneously loaded their
working sets when memory was restored, resulting in
a large volume of random disk access. The synthetic
benchmark provides following insights on IP overhead:

• It is expensive to reclaim memory from a container that
is actively dirtying its working set.

• Depriving CPU effectively throttles disk reads during
memory reclaiming, shortening the suspension delay.

• Spark jobs are particularly susceptible to the resump-
tion overhead when multiple tasks from an/a execu-
tor/container are activated to simultaneously load their
working sets from disk.

To reduce the overhead, one optimization is to first re-
claim CPU from a container to throttle task activity be-
fore memory is reclaimed. However, this optimization is
not sufficient to guarantee short job latency or minimize
long job degradation, which motivated us to develop the
graceful preemption.

3.3 Graceful Task Preemption
While immediate preemption deprives a task of all re-
sources to completely suspend the task, graceful preemp-
tion (GP) shrinks a preempted task and reclaims its re-
sources in multiple rounds.

Compared to immediate preemption, graceful preemp-
tion reclaims a task’s resources at a pre-defined step
~r = (c,m), where c and m are the unit resource recla-
mation for CPU cores and memory, respectively. GP is
based on the following insights:

• Tasks from long jobs are usually larger than tasks from
short jobs. Launching a short task often does not need
to reclaim all resources of a long task.

• Resource slack is common in cluster computing.
Memory slack could come from intentional over-
provisioning at job launch to avoid Out-Of-Memory er-
rors, dynamic and epochal memory demands at differ-
ent job stages [24], or diminishing memory demands
towards job completion. CPU slack is due to similar
reasons. Even if CPU is fully utilized, gracefully re-
ducing CPU allocation does not cause drastic perfor-
mance degradation to a preempted task.

• Since tasks’ requests are usually based on their peak
demands, the partially reclaimed resources from pre-
empted tasks are often sufficient for high priority tasks
to make progress at an early stage of execution.

To reclaim resources from a preempted task, the clus-
ter scheduler controls the iteration of graceful preemp-
tion. This process stops if the demands of the high prior-
ity tasks are satisfied. Similar to immediate preemption,
in which we deprive the container of CPU to throttle task
execution so as to accelerate memory reclamation, grace-
ful preemption freezes a container’s CPU when swap-
ping activities are detected. Graceful preemption will
continue until new tasks’ demands are met.

254    2017 USENIX Annual Technical Conference USENIX Association



Figure 4: The architecture of BIG-C.

4 BIG-C: Preemptive Cluster Scheduling
In this section, we describe how to integrate container-
based task preemption into YARN. We begin with a
brief overview of YARN’s resource management and
task scheduling (§4.1). Next, we present the design of
BIG-C and discuss the changes in YARN to support task
preemption (§4.2), and present a preemptive fair share
scheduler based on YARN’s capacity scheduler (§4.3).

4.1 YARN Resource Management
YARN is a generic resource management framework that
allows multiple applications to negotiate resources on a
shared cluster. YARN uses container, a logical bundle
of resources (e.g., h1 CPU, 2GB RAMi) as the resource
allocation unit. A container is considered as a resource
lease and its resources are reclaimed as a whole when a
task is completed or killed. The resource manager (RM),
one per cluster, is responsible for allocating containers to
competing applications. The application master (AM),
one per application, submits requests for containers to
RM. The node manager (NM), one per machine, moni-
tors the allocation of resources on each node and updates
the RM with resource availability.

4.2 BIG-C Design
Figure 4 shows the architecture of BIG-C. The key com-
ponents of BIG-C include a resource monitor (RMon), a
preemptive fair scheduler at the RM and a container al-
locator (CA), a container monitor (CM) at each NM.
Container allocator Although YARN also uses the no-
tion of “container” in resource management, a YARN
container is a logical representation of a task’s resources
but does not control the actual allocation of resources.
The CA component addresses this issue. Upon receiv-
ing the request for launching a new task, CA loads the
task into a Docker container. Next, CA configures the
container with the resources requested by the task.
Container monitor is a per-container daemon in NM
responsible for container preemption. Instructed by the

NM, CM performs two actions: container suspend

and container resume (SR operations in Figure 4).
It reconfigures the preempted container to reclaim re-
sources. If memory swapping is detected in a container,
CM immediately freezes the container by setting the
CPU allocation to 1%.
Resource monitor is a daemon running on the resource
manager. It periodically (every 3 seconds) checks the
resource distribution among queues according to the cur-
rent scheduling policy, the resource availability, and re-
source demands of incoming tasks. Based on the re-
source sharing policy enforced by the scheduler, RMon
together with the scheduler compute how much resource
should be preempted from over-provisioned queues and
send the preemption decision to individual NMs.

4.3 Preemptive Fair Share Scheduler
Overview The preemptive scheduler is built on YARN’s
capacity scheduler, which enforces fair resource al-
location among users. Capacity scheduler is work-
conserving and allows users, each assigned with a job
queue, to use more than their fair shares if there are
available resources in the cluster. When resources
are contended, capacity scheduler kills tasks from
over-provisioned queues to free resources for under-
provisioned queues. The preemptive scheduler replaces
kill-based preemption with immediate preemption (IP) or
graceful preemption (GP). While IP does not require al-
gorithmic changes to capacity scheduler, we need to aug-
ment the fair sharing algorithm to support GP.

Capacity scheduler’s fair sharing algorithm enforces
dominant resource fairness (DRF) [13] among job
queues. Upon receiving resource requests, in the form
of hCPU, RAMi, capacity scheduler calculates the domi-
nant resource in these requests and enforces fair alloca-
tion of the dominant resource. Non-dominant resources
are allocated in proportion to the dominant resource as
specified in the requests. Algorithm 1 shows how ca-
pacity scheduler calculates the amount of resources to be
reclaimed from over-provisioned queues and our modi-
fication (highlighted in red) to support GP. For ease of
discussion, the algorithm assumes two queues, i.e., one
for long jobs and one for short jobs, and two type of re-
sources, i.e., CPU and memory. It can be extended to
support more than two queues and two resources.

Capacity scheduler first determines the desired share
of resource (line 3). The over-provisioned resources for
the long job queue is the difference between the queue’s
current resource allocation~rl and its desired share ~fl (line
4). If the demand of the short jobs is less than the long
job’s over-occupied resources, the demand can be fully
satisfied (line 5-6). Otherwise, all over-provisioned re-
sources should be reclaimed (line 9). The amount of pre-
empted resources ~p is used in Algorithm 2 to determine

USENIX Association 2017 USENIX Annual Technical Conference    255



Algorithm 1 Calculate resources to be preempted.
1: Variables: Long job’s fair share fl , current resource

allocation ~rl , fair allocation ~fl ; total CPU C and
memory M resources; short job’s resource request
~rs; over-provisioned resources ~a; resources of long
job to be preempted ~p.

2: /* Long job’s fair and over-provisioned resources */
3: ~fl = (C⇥fl ,M⇥fl)
4: ~a =~rl�~fl
5: if~rs <~a then
6: ~p =~rs
7: else
8: /* Use DR to calculate preempted resources*/
9: ~p =~a =) ~p = COMPUTEDR(~rs,~a)

10: end if
11: procedure COMPUTEDR(~rs,~a)
12: Determine dominant resource
13: if dominant resource is CPU then
14: ~p = (acpu,amem⇥

rs mem
rs cpu

)

15: else
16: ~p = (acpu⇥

rs cpu
rs mem

,amem)
17: end if
18: return ~p
19: end procedure

which containers that belong to the long job should be
killed to release these resources.

As shown in Algorithm 2, capacity scheduler uses
the heuristic proposed in [37] to choose a job with the
longest remaining time and releases ~p resources from its
containers. Note that ~p is calculated in algorithm 1. Each
time such a container is found, it is added to the kill set C
until either the job has no container left or ~p has been sat-
isfied (line 3-9). If more resources need to be reclaimed,
capacity scheduler moves to the next job (line 10). Note
that as long as the over-provisioned dominant resource
is fully reclaimed, ~p is considered satisfied. The to-be-
killed container set C is then sent to NMs to perform the
killings (line 13). There are two drawbacks of capacity
scheduler due to kill-based preemption. First, kill-based
preemption may lead to resource fragmentation. A killed
long job container may be too large for one short task but
not sufficient for two short tasks. Second, task killing is
not a flexible way to reclaim resource. The killing of a
large container only frees resources on one machine and
may lead to the launch of a large number of small tasks
all clustered on the machine, causing not only load bal-
ancing but also reliability problems.

We make simple changes to capacity scheduler to ad-
dress the above drawbacks. To avoid resource fragmen-
tation, the preempted resource is accurately calculated
by function COMPUTEDR based on the demand of short
jobs and over-provisioned resources (Algorithm 1, line

Algorithm 2 Container preemption.
1: Variables: Set of container to be preempted C; re-

sources to be preempted ~p; preempted resources at
each GP step ~rGP; resources of a preempted con-
tainer~rc.

2: AGAIN:
3: Choose a job with the longest remaining time
4: while ~p > (0,0) do
5: Choose a container c from the job
6: C c
7: ~p = ~p�~rc =) ~p = ~p�~rGP,~rc =~rc�~rGP
8: remove c =) if c is empty or swapping, re-

move c
9: if job has no container left and ~p > (0,0) then

10: goto AGAIN
11: end if
12: end while
13: KILL(C) =) PREEMPT(C)

9). Specifically, the scheduler computes the dominant
resource in request ~rs against the over-provisioned re-
source~a. Instead of reclaiming all over-provisioned non-
dominant resource as capacity scheduler does, it reclaims
the non-dominant resource in proportion to the reclaimed
dominant resource as indicated in~rs. For instance, sup-
pose~a = h10 CPU, 15GB RAMi and~rs = h20 CPU, 10GB
RAMi. Since 20

10 > 10
15 , CPU is the dominant resource.

Because~rs > ~a, capacity scheduler will compute ~p = ~a
and over-reclaim the memory resource. Instead, the pre-
emptive scheduler computes ~p = h10 CPU, 10⇥ 10

20 GB
RAMi. Note that resource preemption based on the dom-
inant resource of short job requests is not possible in the
original capacity scheduler because resource allocation
of long jobs’ containers is based on long jobs’ dominant
resource and should be reclaimed as a whole.

Further, we introduce graceful task preemption in Al-
gorithm 2. When a job is selected, its over-provisioned
resources are reclaimed from a large number of its tasks
at a step of~rGP. For each round, the remaining resources
of a container c are also updated (line 7). Once a con-
tainer starts swapping, showing a memory shortage, it is
immediately frozen and removed from resource reclama-
tion (line 8). As such, preempted resources are collected
from many containers, avoiding drastic slowdown to in-
dividual containers as much as possible. As discussed in
§2.2, evenly preempting resources from tightly-coupled
tasks help minimize slowdowns of Spark jobs.
Practical considerations
Tuning~rGP. The step at which resources are preempted
in graceful preemption presents a tradeoff. The larger the
~rGP, (hopefully) the sooner the short jobs’ demand can
be satisfied, but at the risk of causing more pronounced
slowdown to long jobs. If ~rGP is too large and pre-

256    2017 USENIX Annual Technical Conference USENIX Association



empted containers incur swapping, short jobs can even
wait longer for resources to be freed from swapping con-
tainers. Small~rGP leads slow resource allocation to short
jobs, which may suffer poor performance after launch.
Delayed resumption factor D. Killed and preempted
tasks resubmit their resource requests to the RM and are
treated like ordinary incoming tasks. However, resource
request from a preempted task has a special locality re-
quirement - it can only be satisfied on the machine where
the task was preempted. Moreover, under high burst of
short job arrival, a resumed container can be quickly pre-
empted again. The repeated and wasteful preemptions
hurt long job performance but also cause long queuing
delay to short jobs. To address this issue, we require that
a preempted container needs to try D times before it is
really resumed. This also avoids possible starvation.

4.4 Implementation
We have implemented BIG-C in Hadoop YARN. The re-
source monitor is a new module residing in the resource
manager that extends SchedulingEditPolicy. Our
new preemptive fair share scheduler is based on YARN’s
capacity scheduler. The modifications includes adding
a new task state PREEMPTED, interfaces for task suspen-
sion and resumption in the resource manager. These
changes are generic and can interface with any cluster
schedulers. On node manager, the container monitor ex-
tends ContainerManagerImpl. We build a new mod-
ule called CoresManager to handle CPU allocation at
worker nodes. A Java interface for libcontianer is
added to each node manager to operate Docker contain-
ers. Our implementation includes 2000 lines of Java code
and is based on Hadoop-2.7.1.

5 Evaluation
This section presents the performance evaluation of BIG-
C on a 26-node cluster using representative MapReduce
and Spark workloads. We first provide details of our
testbed (§5.1). Next, we present results from synthetic
workloads with MapReduce and Spark jobs (§5.2), and
study the sensitivity of two tunable parameters in our de-
sign (§5.3). Last, we give results from production work-
loads based on the Google trace (§5.5).

5.1 Experimental Setup
Cluster Setup Each machine in the 26-node cluster has
two 8-core Intel Xeon E5-2640 processors with hyper-
threading enabled, 132GB of RAM, and 5x1-TB hard
drivers configured as RAID-5. The machines were in-
terconnected by 10 Gbps Ethernet. Hadoop-2.7.1. was
deployed on the cluster and HDFS was configured with
a replication factor of 3 and a block size of 128MB. The
worker nodes sent heartbeats to the resource manager ev-
ery 3 seconds. Docker-1.12.1 was used to create contain-

ers and the images were downloaded from online repos-
itory sequenceiq/hadoop-docker.

We configured two queues in YARN’s resource man-
ager to serve heterogeneous workloads. One queue was
dedicated to short jobs and the other was for long jobs.
Such a two-queue setting is commonly used in produc-
tion systems and has been adopted by other works [8, 9,
10]. Additionally, BIG-C can leverage approaches pre-
sented in [10, 12] to classify short and long jobs. To
enforce strictly higher priority for short jobs, we set the
resource share of the short job queue to 95%. The re-
maining 5% was assigned to the long job queue in a best-
effort manner. For comparison, we evaluated the follow-
ing cluster schedulers:

• FIFO scheduler serves all tasks in a single first-in-
first-out queue. It achieves optimal performance for
long jobs, but incurs significant performance penalty
for short jobs.

• Reserve schedulers such as Hawk [10] reserve a por-
tion of the cluster to run short jobs exclusively without
preemption. Our experiments empirically reserve 60%
of cluster resources for short jobs. Long jobs can use
up to 40% of cluster capacity. However, it is challeng-
ing to find the optimal reservation factor under highly
dynamic workloads.

• Kill is the preemption mechanism in YARN. The ca-
pacity scheduler is used to enforce share between
queues. It achieves optimal performance for short jobs,
but causes performance degradation to long jobs.

• IP and GP are immediate preemption and graceful
preemptions, respectively. Our preemptive fair share
scheduler is used with these two approaches.

Workloads We used Spark-SQL [2] to generate TPC-
H queries as short jobs. Hive [30] was used to pop-
ulate TPC-H tables in HDFS. The total data size was
10GB. The container size for Spark-SQL tasks were set
to h4 CPU, 4GBi. We selected long jobs from HiBench
benchmarks. For MapReduce jobs, we chose map-heavy
wordcount and reduce-heavy terasort. The map and re-
duce containers were set to h1 CPU, 2GBi and h1 CPU,
4GBi, respectively. The input size of the MapReduce
jobs was 600GB. We selected PageRank, Kmeans, Bayes
and WordCount from HiBench as the Spark jobs. The
containers of Spark executors were much larger with
configurations of h8 CPU, 16GBi, h8 CPU, 32GBi, and
h16 CPU, 32GBi, depending on the input size. 3

Metrics We evaluated the cluster schedulers using the
following metrics: job completion time (JCT) is the time

3The number of CPUs specifies the number of parallel tasks Spark
will launch in each executor. Memory size should be large enough to
prevent tasks from running into the Out-Of-Memory error.

USENIX Association 2017 USENIX Annual Technical Conference    257



Figure 5: (a) The submission patterns of short jobs in the synthetic workloads. The performance of short Spark-SQL
queries (b,d,f) and long Spark jobs (c,e,g) with different schedulers.

when job is submitted until it is completed; job queue-
ing delay is the time when a job is submitted until its
execution starts; CoV of JCT is JCT’s coefficient of vari-
ation; cluster utilization is the CPU utilization over the
total CPU capacity of the cluster.

5.2 Results on Synthetic Workloads
Setting In this experiment, we created a controlled en-
vironment to study the performance of BIG-C. We gener-
ated three workload patterns, each with mixed long and
short jobs and lasting for 900 seconds. Long jobs were
continuously submitted throughout the experiment and
persistently utilized about 80% of the cluster resources.
Figure 5(a) shows the submission pattern of short jobs.
While all three patterns had a base demand of around
20% cluster capacity, they differed in the submission
bursts. High-load and low-load generated approximately
90% and 40% cluster utilizations, respectively, during
the burst period between the 300th and 700th seconds.
In contrast, multi-load had two peaks during the burst
period with each peak demanding over 80% cluster re-
sources. Clearly, the cluster was overloaded during the
bursts and long jobs should be preempted by short jobs.
Spark performance Figure 5(b)-(g) shows the results.
Among schedulers, reserve achieved the best perfor-
mance for short jobs under low-load and multi-load,
since the reserved 60% cluster resources were sufficient
to serve the burst. Under high-load, Reserve had de-
graded performance as the resource reservation for short
jobs was less than the peak demand. Kill was among
the best performing schedulers for all three scenarios. In
contrast, FIFO inflicted substantially delays to short jobs
due to the absence of preemption. Short jobs needed to
wait for the completion of long jobs before they can be
scheduled. Our approaches IP and GP with the preemp-

tive fair scheduler achieved close performance to the best
performing schedulers. Overall, GP had superior perfor-
mance than IP as it required less resource reclamation
time before short jobs can be launched.

We draw the 50th percentile and 90th percentile per-
formance for long Spark jobs to show the median and
the long tail JCTs. FIFO achieved the best performance
for long jobs because short jobs were unable to preempt
and interrupt long job execution. In contrast, kill based
preemption incurred significant delays to long jobs, es-
pecially for the 90th percentile JCT, in all scenarios. It
caused on average 140% degradation compared to FIFO
for the tail JCT. Note that kill-based preemption did
not affect the median performance much under low-load
since only a few long jobs were killed.

In comparison, IP had the worst median and tail per-
formance among all schedulers under low-load. Its ag-
gressive resource preemption and the resulted memory
swapping even affected the median JCT under low-load,
in which other non-preempted jobs suffered degradation
due to memory thrashing. Another reason for IP’s poor
performance was because complete suspension of one
task in Spark jobs often stops the entire job due to task
synchronization. Note that even reserve, which only ded-
icated 40% cluster capacity to long jobs, achieved better
performance than kill and IP, indicating that long queu-
ing delay was less damaging on performance than ag-
gressive killings and preemptions. Finally, GP was the
best performing scheduler compared to baseline FIFO.
It incurred 13%, 61%, and 17% penalty to the tail per-
formance compared to FIFO under low-load, high-load,
and multi-load, respectively. The slightly worse median
performance of GP compared to kill was the evidence
that many tasks were slowed down due to the collection
of preempted resources on these tasks.

258    2017 USENIX Annual Technical Conference USENIX Association



Figure 6: The performance of short Spark-SQL queries (a,b,c) and two long MapReduce jobs (d,e).

Another important finding is that kill-based preemp-
tion caused 13%, 15%, and 20% of long jobs failed to
complete 4. In contrast, although IP incurred significant
overhead, it caused no jobs to fail.
MapReduce performance Figure 6 shows the results
of MapReduce workloads. The long job performance is
normalized to the scenario in which the cluster is dedi-
cated to long jobs. The short jobs were the same Spark-
SQL queries while the long jobs were map-heavy word-
count and reduce-heavy terasort. MapReduce jobs differ
from Spark jobs in many ways. First, a long job usually
contains a large number of small mappers, which com-
plete quickly. Second, while Spark’s in-memory com-
puting imposes persistent resource demand throughout
job execution, MapReduce jobs show clear decline in de-
mand when entering the reduce phase. Finally, MapRe-
duce tasks persist intermediate data onto disk whenever
their memory buffers are full. These differences led to
different findings in MapReduce workloads.

Figure 6 does not show the results of FIFO because
the background long jobs had a large number of mappers
backlogged and most short jobs suffered 15-20 minutes
slowdown. In Figure 6(a)-(c), it is unexpected that kill in-
curred significant queuing delay to short jobs while both
IP and GP performed much better. An examination of
YARN’s job submission log revealed that the large num-
bers of killed MapReduce tasks were immediately resub-
mitted to the scheduler and later killed again, causing
wasted cluster resources and additional queuing delays
to short jobs. In contrast, both IP and GP is config-
ured with delayed resumption, which avoided repeated
preemptions. Reserve had superior performance among
the schedulers except for the scenario under high-load,
in which the reservation was not sufficient. Both IP and
GP performed well for short jobs.

4Failed jobs were not included in JCT calculation.

Figure 7: Effects of (a) various degrees of resumption
delay and (b) the granularity of graceful preemption.

For long MapReduce jobs, the performance of sched-
ulers depends on the type of the long job workloads. As
shown in Figure 6(d), kill, IP, and GP had similar perfor-
mance for map-heavy workload wordcount. It suggests
that kill-based preemption is not particularly more ex-
pensive than container-based preemption as the mappers
are usually small. Because there are a large number of
mappers, which are independent from each other, the lost
work due to the killings of small mappers can be over-
lapped with other mappers backlogged in the scheduler.
In contrast, kill-based preemption incurred substantial
overhead to reduce-heavy terasort workload. The cost
of killing a reduce task is prohibitively high as relauch-
ing the killed reducer requires re-shuffling all its input
data over the network.

Both IP and GP achieved near-optimal performance
with IP incurring slight degradation under high-load and
multi-load. The write-back of dirty data effectively re-
duces the in-memory footprint of preempted tasks, mak-
ing it easier for IP and GP to reclaim memory compared
to that in Spark jobs.

5.3 Parameter Sensitivity
As discussed above, the delayed resumption in our ap-
proaches effectively avoided repeated preemptions. In
this section, we evaluate the effects of two configurable

USENIX Association 2017 USENIX Annual Technical Conference    259



Figure 8: Results on the Google trace. (a) Jobs submission patterns. (b) The CDF of short job’s JCT. (c) Long job’s
50th and 90th percentile completion time. (d) Statistics on cluster utilization, sampled every 2 seconds.

parameters in our approach. The first parameter is the
number of tries a preempted container needs to perform
before it is actually resumed. Figure 7(a) shows the effect
of varying numbers of the delayed try D on short job per-
formance. The figure suggests that delayed resumption is
critical to guaranteeing low latency for short jobs. Dis-
abling delayed resumption (D = 0) led to queuing delay
as high as 80 seconds for short jobs. Enabling delayed
preemption had salient impact on performance but with
diminishing gain when further increasing D. We empir-
ically set resumption factor D to 3 to strike a balance
between short job latency and long job starvation. This
setting was used in all other experiments.

We have shown that there exist tradeoffs between ag-
gressive and graceful resource preemption. Next, we
quantitatively study how the granularity (aggressiveness)
of GP affects long job performance. We use the coeffi-
cient of variance (CoV) of JCT to measure the distribu-
tion of preempted resources. The basic preemption unit
was set to h1 CPU, 2GB RAMi. The GP granularity is
determined by how many basic resource units should be
reclaimed in one round. Figure 7(b) shows that the CoV
of job completion time increased as we increased the
granularity of GP. Compared to kill-based and immediate
preemptions, graceful preemption, even with aggressive
resource reclamation, still incurred less variation across
jobs. We set the preemption granularity to h2 CPU, 4GB
RAMi, i.e., two basic units.

5.4 Overhead
The overhead of BIG-C mainly comes from reclaiming
the memory of preempted tasks and the delay caused by
memory restoration. Our experiments show that it takes
approximately 3 seconds to reclaim 1GB dirty memory,
which adds considerable scheduling delay to short jobs.
Although BIG-C avoids such overhead for most of time
due to graceful preemption, performance degradation is
inevitable if GP fails to satisfy short job demands.

5.5 Results on the Google Trace
We also evaluated BIG-C by replaying the production
Google trace on our testbed. This trace contains 2202

jobs, of which 2020 are classified as short jobs and 182
as long jobs based on job completion time and resource
usage. The setting conforms with that used in [10].
We scaled down the task numbers in each job to match
our cluster capacity so that each job takes a reasonable
amount of time to complete. The total trace ran for 3.8
hours. We first dedicated the entire cluster to short jobs
and long jobs to respectively quantify their resource us-
age. The results are shown in Figure 8(a). The average
cluster utilization was about 17% and 75% for short and
long jobs, respectively. The short jobs only consumed a
small portion of the total resource, but with highly vari-
able and unpredictable submission rates. We can clearly
see a few short job usage spikes throughout the trace. For
example, the spike at the 8000th second used up to 95%
of the cluster capacity. Similarly, we configured the short
job share to be 95% of the cluster capacity.

Figure 8(b) plots the latency distribution of short job in
the Google trace. Most schedulers except FIFO achieved
good performance. FIFO had a 90th percentile latency of
335s, which was 6 times larger than its median latency.
We also examined the tail latency under other schedulers.
The 95th percentile latency for reserve, kill, IP, and GP
were 183s, 176s, 118s, and 96s, respectively. Our two
approaches outperformed other schedulers with GP be-
ing the best.

Figure 8(c) draws the 50th percentile and 90th per-
centile performance for long jobs. With the default kill-
based preemption, 105 out of the 182 long jobs were
killed, among which 41 failed and 105 suffered signif-
icant slowdown due to job re-launch. Note that failed
jobs were excluded from JCT calculation. As shown in
the figure, GP improved the 90th percentile job runtime
by 67%, 37% and 32% over kill, IP, and reserve, respec-
tively. Compared to the optimal FIFO scheduler for long
jobs, GP only added 4% delay to JCT. Similarly, about
23% long jobs failed with kill-based preemption while
our approaches did not cause any job failures.

Figure 8(d) plots the cluster utilization under different
schedulers. Work-conserving schedulers achieved much
higher resource utilizations than reserve did. For more
than 60% of time in the experiment, the overall cluster

260    2017 USENIX Annual Technical Conference USENIX Association



utilization was above 80% for FIFO, kill, IP, and GP.
In contrast, reserve rarely used more than 60% of clus-
ter capacity due to the reservation for short jobs. Note
that both kill and IP had periods when the cluster utiliza-
tion was lower than 40%. This was due to the killing and
aggressive preemption of tasks that impeded the over-
all progress of the tightly-coupled long jobs, e.g., Spark
jobs. When waiting for the killed or preempted task to
relaunch or resume, other sibling tasks were idling.

6 Related Work
The last few years have witnessed the growth of work-
loads provisioned on top of data processing frameworks
like Hadoop [1], Naiad [23] or Spark [36]. The char-
acteristics of such workloads have been well-studied in
previous work [32].
Cluster Scheduling is a core component in data-
intensive cluster computing. YARN [31] and Mesos [16]
are two widely used open-source cluster managers. Both
YARN and Mesos use a two-level architecture, decou-
pling allocation from application-specific logic such as
task scheduling, speculative execution or failure han-
dling. Omega [29] is a parallel scheduler architecture
based on lock-free optimistic concurrency control to
achieve implementation extensibility, globally optimized
scheduling, and scalability. Another thread of work fo-
cuses on distributed scheduler to overcome the scalabil-
ity problem in large-scale clusters. Sparrow [25] is a
fully distributed scheduler that performs scheduling by
performing randomized sampling. Hawk [10] and Mer-
cury [18] both implement a hybrid scheduler to avoid
inferior scheduling decisions for a subset of jobs as a
trade-off of scheduling quality and scalability. yaq-d and
yaq-c [27] provides queue management at worker nodes
to improve cluster utilization and to avoid head-of-line
blocking. Our proposed container-based preemption is
orthogonal to these approaches and helps simplify the
design of cluster schedulers by providing an alternative
means of enforcing task priority. Note that our work does
not intend to improve task classification but focuses on a
lightweight mechanism for task preemption.
Preemption Amoeba [3] and Natjam [8] implement pre-
emption using checkpointing to achieve elastic resource
allocation. Natjam targets at Hadoop applications and
Amoeba built a prototype based on Sailfish [26]. Li et.
al., propose a new checkpoint mechanism by leveraging
CRIU [19]. Their approaches interact with the Appli-
cation Master and dump the checkpoints to user space.
There are two drawbacks in checkpoint-based preemp-
tion. First, it is challenging to determine the frequency
of checkpointing. On-demand checkpointing, such as the
preemption approaches based on CRIU [19], requires the
entire preempted task to be dumped onto HDFS and is
equivalent to our proposed immediate preemption. Peri-

odic checkpointing at each iteration reduces preemption
delay but incurs considerable runtime overhead. Sec-
ond, existing checkpointing approaches require changes
to user applications. Our proposed container-based pre-
emption is application agnostic and the tuning of the GP
granularity is relatively straightforward.
Utilization To improve cluster utilization, authors in [21,
35, 20, 38, 14] propose to consolidate applications on a
shared infrastructure and separately manage their inter-
ference so that applications’ QoS could be guaranteed.
These techniques employ online profiling to identify the
best combinations of workloads that do not interfere with
each other. However, in data center scheduling, in which
job submissions are unpredictable and the composition
of jobs is heterogeneous, offline training or online pro-
filing may not be accurate. Our approach does not re-
quire the cluster to be under-provisioned nor assumes
scheduling-friendly job submissions.
Lightweight virtualization Container-based virtualiza-
tion have been widely used both in industry and in re-
search. Xavier et. al., [34] evaluated the HPC perfor-
mance in container based environments. Burns et al., [6]
propose a new design pattern for container based dis-
tributed systems. Google Borg [33] has used OS con-
tainer to aid cluster management. However, its con-
tainer usage is limited to task isolation and preemption
is still based on task killing. Harter et al., [15] propose
a Docker storage driver to enable fast container startup.
The YARN community has also provided support to run
Docker containers to replace the logical YARN con-
tainer. However, there still lacks support to fully control
the resource allocation to containers in YARN.

7 Conclusion
In this paper, we tackle the problem of scheduling het-
erogeneous workloads on a shared cluster. Inspired by
task scheduling in operating systems, in which fast and
low-cost preemption is key to achieving both responsive-
ness and high utilization, we leverage lightweight vir-
tualization to enable task preemption in cluster comput-
ing, such as YARN. Experimental results show that our
proposed mechanism for preemption is effective for dif-
ferent types of Big Data workloads, e.g., MapReduce
and Spark. Note that container-based preemption is not
yet suitable for workloads with sub-second latency, like
those studied in [25]. Suspending and saving the context
of a data-intensive task still takes a few seconds. Pro-
viding extremely low-latency task preemption for sub-
second workloads is an interesting future direction.
Acknowledgement We are grateful to our reviewers for
their comments on this paper and our shepherd Mona At-
tariyan for her suggestions. This research was supported
in part by U.S. NSF grants CNS-1422119, CNS-1649502
and IIS-1633753.

USENIX Association 2017 USENIX Annual Technical Conference    261



References
[1] Apache hadoop project. https://hadoop.apache.org/.

[2] Spark-sql. http://spark.apache.org/sql/.

[3] ANANTHANARAYANAN, G., DOUGLAS, C., RAMAKRISHNAN,
R., RAO, S., AND STOICA, I. True elasticity in multi-tenant
data-intensive compute clusters. In Proceedings of the Third ACM
Symposium on Cloud Computing (2012).

[4] ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W. Cluster re-
serves: a mechanism for resource management in cluster-based
network servers. In Proceedings of ACM SIGMETRICS Perfor-
mance Evaluation Review (2000).

[5] BARROSO, L. A., AND HOELZLE, U. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan and Claypool Publishers, 2009.

[6] BURNS, B., AND OPPENHEIMER, D. Design patterns for
container-based distributed systems. In Proceedings of the 8th
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 16) (2016).

[7] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive analytical
processing in big data systems: A cross-industry study of mapre-
duce workloads. In Proceedings of the VLDB Endowment (2012).

[8] CHO, B., RAHMAN, M., CHAJED, T., GUPTA, I., ABAD, C.,
ROBERTS, N., AND LIN, P. Natjam: Design and evaluation of
eviction policies for supporting priorities and deadlines in mapre-
duce clusters. In Proceedings of the 4th annual Symposium on
Cloud Computing (2013).

[9] CURINO, C., DIFALLAH, D. E., DOUGLAS, C., KRISHNAN, S.,
RAMAKRISHNAN, R., AND RAO, S. Reservation-based schedul-
ing: If you’re late don’t blame us! In Proceedings of the ACM
Symposium on Cloud Computing (2014).

[10] DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W. Hawk: Hybrid datacenter scheduling. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 15) (2015).

[11] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of
the 19th international conference on Architectural support for
programming languages and operating systems (2014).

[12] FERGUSON, A. D., BODIK, P., KANDULA, S., BOUTIN, E.,
AND FONSECA, R. Jockey: guaranteed job latency in data paral-
lel clusters. In Proceedings of the 7th ACM european conference
on Computer Systems (2012).

[13] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness:
Fair allocation of multiple resource types. In Proceedings of the
USENIX Symposium on Networked Systems Design and Imple-
mentation (2011).

[14] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND ANAN-
THANARAYANAN, G. Altruistic scheduling in multi-resource
clusters. In Proceedings of OSDI16: 12th USENIX Symposium
on Operating Systems Design and Implementation (2016).

[15] HARTER, T., SALMON, B., LIU, R., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Slacker: fast distribution with
lazy docker containers. In Proceedings of 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16) (2016).

[16] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R. H., SHENKER, S., AND STOICA, I.
Mesos: A platform for fine-grained resource sharing in the data
center. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (2011).

[17] HUANG, S., HUANG, J., DAI, J., XIE, T., AND HUANG, B. The
hibench benchmark suite: Characterization of the mapreduce-
based data analysis. In Proceedings of the Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International Conference
on (2010).

[18] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS, C.,
CHALIPARAMBIL, K., FUMAROLA, G. M., HEDDAYA, S., RA-
MAKRISHNAN, R., AND SAKALANAGA, S. Mercury: Hybrid
centralized and distributed scheduling in large shared clusters. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 15) (2015).

[19] LI, J., PU, C., CHEN, Y., TALWAR, V., AND MILOJICIC, D.
Improving preemptive scheduling with application-transparent
checkpointing in shared clusters. In Proceedings of the 16th An-
nual Middleware Conference (2015).

[20] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P.,
AND KOZYRAKIS, C. Heracles: improving resource efficiency
at scale. In Processings of the ACM SIGARCH Computer Archi-
tecture News (2015).

[21] MARS, J., TANG, L., HUNDT, R., SKADRON, K., AND SOFFA,
M. L. Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Proceedings of the
44th annual IEEE/ACM International Symposium on Microarchi-
tecture (2011).

[22] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Proceedings of the Linux Journal
(2014).

[23] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-
tem. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013).

[24] NGUYEN, K., FANG, L., XU, G., DEMSKY, B., LU, S.,
ALAMIAN, S., AND MUTLU, O. Yak: A high-performance
big-data-friendly garbage collector. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16) (2016).

[25] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STO-
ICA, I. Sparrow: distributed, low latency scheduling. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (2013).

[26] RAO, S., RAMAKRISHNAN, R., SILBERSTEIN, A., OVSIAN-
NIKOV, M., AND REEVES, D. Sailfish: A framework for large
scale data processing. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing (2012).

[27] RASLEY, J., KARANASOS, K., KANDULA, S., FONSECA, R.,
VOJNOVIC, M., AND RAO, S. Efficient queue management for
cluster scheduling. In Proceedings of the Eleventh European
Conference on Computer Systems (2016).

[28] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND
KOZUCH, M. A. Towards understanding heterogeneous clouds
at scale: Google trace analysis. Proceedings of the Intel Science
and Technology Center for Cloud Computing, Tech. Rep (2012).

[29] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M.,
AND WILKES, J. Omega: flexible, scalable schedulers for large
compute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems (2013).

[30] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,
ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY, R. Hive:
a warehousing solution over a map-reduce framework. Proceed-
ings of the VLDB Endowment (2009).

[31] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache hadoop yarn: Yet another

262    2017 USENIX Annual Technical Conference USENIX Association



resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing (2013).

[32] VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B.,
AND STOICA, I. Ernest: efficient performance prediction for
large-scale advanced analytics. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16)
(2016).

[33] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-scale cluster manage-
ment at google with borg. In Proceedings of the Tenth European
Conference on Computer Systems (2015).

[34] XAVIER, M. G., NEVES, M. V., ROSSI, F. D., FERRETO, T. C.,
LANGE, T., AND DE ROSE, C. A. Performance evaluation of
container-based virtualization for high performance computing
environments. In Proceedings of the 2013 21st Euromicro In-
ternational Conference on Parallel, Distributed, and Network-
Based Processing (2013).

[35] YANG, H., BRESLOW, A., MARS, J., AND TANG, L. Bubble-
flux: Precise online qos management for increased utilization
in warehouse scale computers. In Proceedings of the ACM
SIGARCH Computer Architecture News (2013).

[36] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster computing with
working sets. Proceedings of HOTCLOUD’16 USENIX Work-
shop on Hot Topics in Cloud Computing (2010).

[37] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R. H.,
AND STOICA, I. Improving mapreduce performance in hetero-
geneous environments. In OSDI (2008).

[38] ZHANG, Y., PREKAS, G., FUMAROLA, G. M., FONTOURA,
M., GOIRI, Í., AND BIANCHINI, R. History-based harvesting of
spare cycles and storage in large-scale datacenters. In Proceed-
ings of 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (2016).

USENIX Association 2017 USENIX Annual Technical Conference    263




